webサービスを使った画像の二値化

アップロードし,二値化 設定 色数:2色モノクロ 以上 WEBブラウザ上で画像や写真をモノクロに加工できるツール - PEKO STEP アップロードし,二値化確認 https://www.petitmonte.com/labo/imageconvert/

python opencv による2値化

#!/usr/bin/python #-*- coding:utf-8 -*- import numpy as np import cv2 # original image (gray scale image) org_img = cv2.imread('image_example.jpg', 0) # preference THRESHOLD = 127 MAXVALUE = 255 # binarization using opencv _, bin_cv2 = cv2…

PSによるpngの2値化

PS起動 「イメージ」→「色調補正」→「2階調化」を選択 2階調化パネルの設定:しきい値設定 finish 保存 digitalfan.jp

ssh通信 ev3-devの初期設定

ev3にpip3の入れ方 sudo apt-get install curl curl -kL https://bootstrap.pypa.io/get-pip.py | sudo python エラーの場合 apt get update してみるといいかも ssh接続エラーの場合 SSHで接続した際に「Host key verification failed」 Debian wheezyから…

python環境の構築方法

python等でプロジェクトごとに環境構築する prenvを用いた環境構築 prenv installsudo git clone git://github.com/yyuu/pyenv.git ./pyenvpathの設定 export PYENV_ROOT=$HOME/.pyenv export PATH=$PYENV_ROOT/bin:$PATH eval "$(pyenv init -)"pythonバー…

Exponential Linear Units(ELU)とは

qiita.com

Sim GANをやってみたon tensorflow

参考 GitHub - carpedm20/simulated-unsupervised-tensorflow: TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

DCGANで植物の葉画像を生成してみたon Keras

データセット GitHub - spMohanty/PlantVillage-Dataset 参考 GitHub - jacobgil/keras-dcgan: Keras implementation of Deep Convolutional Generative Adversarial Networks 結果 step 100 step 29900 病害葉画像版 病名:ceder rust step 29900 病名:sca…

sckit-learn データセットを使った機械学習 回帰編1

回帰問題とは数値を予測する問題です.学習時に入力データと出力データの組み合わせから対応する規則を学び,未知の入力データに対しても適切な出力を生成できるようにするもの.つまり,入力と出力の関係(関数)を推定し,近似する問題と言える. 線形回帰直…

sckit-learn データセットを使った機械学習 metricsで評価編

正答率(Accuracy)適合率(Precision)再現率(Recall)F値(F-measure)混同行列(Confusion Matrix) #metrics.accuracy_score(test_target, predicted) print('accuracy:/n', metrics.accuracy_score(expected, predicted)) #metrics.precision_score(te…

sckit-learn データセットを使った機械学習 分類編2 分類器を使った分類

用いる分類器の種類・k近傍法 ・サポートベクターマシン(線形) ・サポートベクターマシン(ガウシアンカーネル) ・決定木 ・ランダムフォレスト ・AdaBoost ・ナイーブベイズ ・線形判別分析 ・二次判別分析サポートベクターマシン サポートベクターマシ…

Matplotlibで画像を表示

from PIL import Image from matplotlib import pylab as plt # 画像の読み込み img = np.array( Image.open('####.jpg') ) # 画像の表示 plt.imshow( img )

sckit-learn データセットを使った機械学習 分類編1

digitsデータセット読み込み表示 from sklearn import datasets digits = datasets.load_digits() #読み込みデータ表示 #digits.dataが入力データ #digits.targetが判別結果 print(digits.data) [[ 0. 0. 5. ..., 0. 0. 0.] [ 0. 0. 0. ..., 10. 0. 0.] [ 0.…

python zip( )の使いかた

リスト内包表記 Python 2.7 [a+b+c+d for (a, b, c,d) in zip(list1, list2, list3, list4)] Python 2.7 list1 = [1,2,3] list2 = [2,3,4] list3 = [5,6,7] for (a, b, c) in zip(list1, list2, list3): print a, b, c Python 2.7 for (a, b, c) in zip(list…

plt.legend() matplotlib by python で凡例

. label=キーワード引数を使う場合 プロットをする際にlabel=キーワード引数で結びつけるラベルを渡すことができます。 結びつけたら、あとはplt.legend関数を呼び出すだけで凡例がグラフにプロットされます。 x = np.linspace(0, 10) y_sin = np.sin(x) y_c…

numpy .arange データ生成

numpyの.arangeでデータを生成する 0,1,2,3...とか1,3,5,7のようなデータを作る方法 start, step, dtypeは省略可能でstartを省略すると0からになる。how to usearange([start],stop,[step],[dtype]) start, step, dtypeは省略可能でstartを省略すると0からに…

scatter plot by matplotlib

matplotlib.pyplot.scatter の概要 matplotlib には、散布図を描画するメソッドとして、matplotlib.pyplot.scatter が用意されてます。 matplotlib.pyplot.scatter の使い方 Python 1 2 3 4 matplotlib.pyplot.scatter(x, y, s=20, c=None, marker='o', cmap…

numpy スライス

pythonのリストやnumpy配列でのスライスは i:j:n の形式で行います。 ここでi は開始インデックス、 j は終了インデックスを表しており、i以上でjより小さいインデックス(i <= n < j)でスライスされます。次に n ですが、これはステップ数を表しますが、ス…

scikit-learnで標準化,正規化

標準化の式 正規化の式 scikit-learn でsklearn の StandardScaler と MinMaxScaler がそれぞれ 標準化 と 正規化 のモジュールです。主に使うメソッドは次の 3 つです。fit パラメータ(平均や標準偏差 etc)計算 transform パラメータをもとにデータ変換 f…

keras モデル構築 評価

#ケース1 score = model.evaluate(x_test, y_test, batch_size=128) #ケース2 scores = model.evaluate(X, Y, verbose=0) print("%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))

keras モデル構築 学習

#ケース1 data = np.random.random((1000, 100)) labels = np.random.randint(10, size=(1000, 1)) # ラベルデータをカテゴリの1-hotベクトルにエンコードする one_hot_labels = keras.utils.to_categorical(labels, num_classes=10) # 各イテレーションの…

keras モデル構築 コンパイル記述

モデルの学習を始める前に,compileメソッドを用いどのような学習処理を行なうかを設定する必要があります.compileメソッドは3つの引数を取ります: 最適化アルゴリズム: 引数として,定義されている最適化手法の識別子を文字列として与える(rmspropやadagr…

keras モデル構築 Sequentialモデルでの構築

Sequentialモデルでの構築 #.addで組む際はこのやり方 model = Sequential() model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) model.add(Dense(8, init='uniform', activation='relu')) model.add(Dense(1, init='uniform', activati…

chainerRLを動かす

OpenAI Gym https://gym.openai.com/docs インストール git clone https://github.com/openai/gym.git cd gym pip install -e . ubuntuの場合 apt-get install -y python-numpy python-dev cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev python-o…

python 数値計算 平方根 

# -*- coding: utf-8 -*- import math def main(): x = 5 y = math.sqrt(x) print(y) if __name__ == "__main__": main()

python数値計算 5のべき乗を計算したい場合

pythonでべき乗 5のべき乗を計算したい場合 # -*- coding: utf-8 -*- def main(): x = 5 y = pow(x,2) print(y) if __name__ == "__main__": main()

python 数値計算 絶対値|a|

pythonで絶対値を計算したい場合 abs(またはabsolute等)を使う # -*- coding: utf-8 -*- def main(): a = -10 a = abs(a) print(a) if __name__ == "__main__": main()

python 数値計算 4捨5入

1.25を入力した場合round(x,1)で少数第一位で四捨五入する 以下コード #coding: utf-8 def main(): x = 1.23 x = round(x,1) print(x) if __name__ == "__main__": main()

テーラー展開

参考:http://computation.cside.com/math/math002.html

FIRフィルタの設計by python

FIRフィルタの設計by python○firwinの使い方 例) scipy.signal.firwin(numtaps, cutoff, width=None, window='hamming', pass_zero=True, scale=True, nyq=1.0) numtaps:タップ数 cutoff:カットオフ周波数 window:窓関数 pass_zero: nyq:ナイキスト周波数 …