激安ラジコン(RC)の自動運転化計画※RCをEV3に変更しました

目的:ラジコンの自動運転をすること 使ったもの ハード ラジコン:レゴ® マインドストーム® EV3 ラズベリーパイ3 カメラ:LOGICOOL C270 ソフト 言語:python DLライブラリ:Keras(on Tensorflow) その他:Opencv,numpy,paho-mqtt... システムの概要 今回用…

激安ラジコン(RC)の自動運転化計画※プログラムは6/25掲載予定

目的:総計1万円でラジコンの自動運転化をすること 使ったもの ハード ラジコン:軽トラRC(Amazon CAPTCHA) ラズベリーパイ3 モータードライバー:L298n カメラ:LOGICOOL C270 ソフト 言語:python DLライブラリ:Keras(on Tensorflow) Opencv,numpy,pah…

L298Nを使ってモータの制御

L298Nとは 2つのモータを独立して駆動でき、正転逆転制御などに最適です。 制御は各モーターに対して、イネーブル(回転する/しない)と回転方向の指定を2線でおこないます。 マイコンでの制御のほか、スイッチなどによってマニュアル制御も簡単におこなえ…

Intersection-over-Union(IoU)とは

Intersection-over-Union(IoU)とは 物体認識の分野で領域の一致具合を評価する手法である. predicted bound box とground truth boxを合わせた領域bが, 目的となる領域g(ground truth box)がどれだけ含まれているかとなる.IoU(b,g)=area(b∩g)/area(b∪g) 参考…

request python まとめ

what is request requestsとはサードパーティ製のhttp通信を行うためのライブラリ これを使用すると、webサイトのデータのダウンロードやrestapiの使用が可能 install cmd pip install requests example ヤフーのニュース一覧ページのhtmlを取得 import requ…

imgaugライブラリを使った機械学習用のdata augmentation

install 通常版 sudo pip install imgaug 最新版 pip install git+https://github.com/aleju/imgaug 必要なもの six numpy scipy scikit-image (pip install -U scikit-image) OpenCV (i.e. cv2) 使い方 すべてのDA手法をお試しするならgenerate_example_ima…

keras 学習済モデルの取り扱い全般まとめ

keras公式の学習済モデル読み込み方法 from keras.applications.inception_v3 import InceptionV3 InceptionV3 = InceptionV3(include_top=False, weights='imagenet', input_tensor=input_tensor) kerasで利用可能なモデル ImageNetで学習した重みをもつ画…

ubuntu16.04でのTensorFlow環境構築でのメモ

TensorFlowのインストール 「libcupti-dev」を入れます。 sudo apt-get install libcupti-dev 「これはNVIDIA CUDAプロファイルツールインタフェースです。このライブラリは高度なプロファイリングのサポートを提供します。」だそうです。(TensorFlowより)…

data augementation : mixup

mixup1は、2つの訓練サンプルのペアを混合して新たな訓練サンプルを作成するdata augmentation手法の1つ 具体的には、データとラベルのペアから、下記の式により新たな訓練サンプルを作成します。ここでラベルはone-hot表現のベクトルになっているものとしま…

Cutout / Random Erasing

Cutout / Random Erasing Cutout7は2017年8月15日に、Random Erasing8は2017年8月16日と、ほぼ同時期にarXivに論文が公開されたほぼ同一の手法(!)で、モデルの正則化を目的とした新しいdata augmentationを提案しています。 同じく正則化を目的としたDrop…

Shake-Shake

Shake-Shake4 5はResNetをベースとし、テンソルに対するdata augmentationを行うことで、正則化を実現する手法です。通常data augmentationは画像に対して行われますが、中間層の出力テンソル(特徴ベクトル)に対してもdata augmentationを行うことが有効で…

webサービスを使った画像の二値化

アップロードし,二値化 設定 色数:2色モノクロ 以上 WEBブラウザ上で画像や写真をモノクロに加工できるツール - PEKO STEP アップロードし,二値化確認 https://www.petitmonte.com/labo/imageconvert/

python opencv による2値化

#!/usr/bin/python #-*- coding:utf-8 -*- import numpy as np import cv2 # original image (gray scale image) org_img = cv2.imread('image_example.jpg', 0) # preference THRESHOLD = 127 MAXVALUE = 255 # binarization using opencv _, bin_cv2 = cv2…

PSによるpngの2値化

PS起動 「イメージ」→「色調補正」→「2階調化」を選択 2階調化パネルの設定:しきい値設定 finish 保存 digitalfan.jp

ssh通信 ev3-devの初期設定

ev3にpip3の入れ方 sudo apt-get install curl curl -kL https://bootstrap.pypa.io/get-pip.py | sudo python エラーの場合 apt get update してみるといいかも ssh接続エラーの場合 SSHで接続した際に「Host key verification failed」 Debian wheezyから…

python環境の構築方法

python等でプロジェクトごとに環境構築する prenvを用いた環境構築 prenv installsudo git clone git://github.com/yyuu/pyenv.git ./pyenvpathの設定 export PYENV_ROOT=$HOME/.pyenv export PATH=$PYENV_ROOT/bin:$PATH eval "$(pyenv init -)"pythonバー…

Exponential Linear Units(ELU)とは

qiita.com

Sim GANをやってみたon tensorflow

参考 GitHub - carpedm20/simulated-unsupervised-tensorflow: TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

DCGANで植物の葉画像を生成してみたon Keras

データセット GitHub - spMohanty/PlantVillage-Dataset 参考 GitHub - jacobgil/keras-dcgan: Keras implementation of Deep Convolutional Generative Adversarial Networks 結果 step 100 step 29900 病害葉画像版 病名:ceder rust step 29900 病名:sca…

sckit-learn データセットを使った機械学習 回帰編1

回帰問題とは数値を予測する問題です.学習時に入力データと出力データの組み合わせから対応する規則を学び,未知の入力データに対しても適切な出力を生成できるようにするもの.つまり,入力と出力の関係(関数)を推定し,近似する問題と言える. 線形回帰直…

sckit-learn データセットを使った機械学習 metricsで評価編

正答率(Accuracy)適合率(Precision)再現率(Recall)F値(F-measure)混同行列(Confusion Matrix) #metrics.accuracy_score(test_target, predicted) print('accuracy:/n', metrics.accuracy_score(expected, predicted)) #metrics.precision_score(te…

sckit-learn データセットを使った機械学習 分類編2 分類器を使った分類

用いる分類器の種類・k近傍法 ・サポートベクターマシン(線形) ・サポートベクターマシン(ガウシアンカーネル) ・決定木 ・ランダムフォレスト ・AdaBoost ・ナイーブベイズ ・線形判別分析 ・二次判別分析サポートベクターマシン サポートベクターマシ…

Matplotlibで画像を表示

from PIL import Image from matplotlib import pylab as plt # 画像の読み込み img = np.array( Image.open('####.jpg') ) # 画像の表示 plt.imshow( img )

sckit-learn データセットを使った機械学習 分類編1

digitsデータセット読み込み表示 from sklearn import datasets digits = datasets.load_digits() #読み込みデータ表示 #digits.dataが入力データ #digits.targetが判別結果 print(digits.data) [[ 0. 0. 5. ..., 0. 0. 0.] [ 0. 0. 0. ..., 10. 0. 0.] [ 0.…

python zip( )の使いかた

リスト内包表記 Python 2.7 [a+b+c+d for (a, b, c,d) in zip(list1, list2, list3, list4)] Python 2.7 list1 = [1,2,3] list2 = [2,3,4] list3 = [5,6,7] for (a, b, c) in zip(list1, list2, list3): print a, b, c Python 2.7 for (a, b, c) in zip(list…

plt.legend() matplotlib by python で凡例

. label=キーワード引数を使う場合 プロットをする際にlabel=キーワード引数で結びつけるラベルを渡すことができます。 結びつけたら、あとはplt.legend関数を呼び出すだけで凡例がグラフにプロットされます。 x = np.linspace(0, 10) y_sin = np.sin(x) y_c…

numpy .arange データ生成

numpyの.arangeでデータを生成する 0,1,2,3...とか1,3,5,7のようなデータを作る方法 start, step, dtypeは省略可能でstartを省略すると0からになる。how to usearange([start],stop,[step],[dtype]) start, step, dtypeは省略可能でstartを省略すると0からに…

scatter plot by matplotlib

matplotlib.pyplot.scatter の概要 matplotlib には、散布図を描画するメソッドとして、matplotlib.pyplot.scatter が用意されてます。 matplotlib.pyplot.scatter の使い方 Python 1 2 3 4 matplotlib.pyplot.scatter(x, y, s=20, c=None, marker='o', cmap…

numpy スライス

pythonのリストやnumpy配列でのスライスは i:j:n の形式で行います。 ここでi は開始インデックス、 j は終了インデックスを表しており、i以上でjより小さいインデックス(i <= n < j)でスライスされます。次に n ですが、これはステップ数を表しますが、ス…

scikit-learnで標準化,正規化

標準化の式 正規化の式 scikit-learn でsklearn の StandardScaler と MinMaxScaler がそれぞれ 標準化 と 正規化 のモジュールです。主に使うメソッドは次の 3 つです。fit パラメータ(平均や標準偏差 etc)計算 transform パラメータをもとにデータ変換 f…